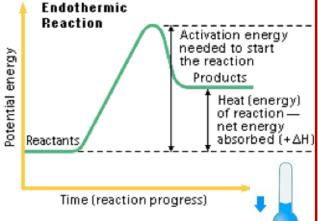
Chemistry Crib Sheet: Topic 5

In a reaction breaking bonds takes in energy. In a reaction making new bonds releases energy.

EXOthermic reactions release more energy forming new bonds than is taken in when old bonds are broken so overall give out energy.


Activation energy Energy Reactants Overall change in energy (ΔH) **Products** Reaction progress

Examples:

- Combustion
- Neutralisation
- Oxidation

energy forming new bonds than is taken in when old bonds are broken so overall take in energy.

ENDOthermic reactions release less

Examples:

Uses:

Hand

cans

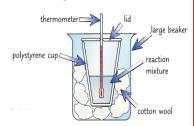
warmers

Self heating

- Thermal decomposition
- Reaction between citric acid + sodium hydrogencarbonate

Uses:

 Sports injury packs


Bond energies

Every bond has a different energy associated with it - e.g. you need 436kJ to break the bond between 2 hydrogen atoms (H-H). You can use these to calculate the overall energy change for a reaction

Core practical: How does the concentration of hydrochloric acid affect the amount of energy released when it is neutralised?

- 1. Add 25cm3 of 0.25M HCl to 1 beaker and 25cm³ of NaOH to
- 2. Put them in a 25°C water bath
- 3. Mix the liquids
- 4. Take the temp every 30s using a thermometer
- 5. Record the highest temp
- 6. Repeat using different acid concentrations (e.g. 0.5M, 1.0M)

Use the apparatus shown below to prevent energy loss to the surroundings

k]//maal. 7 ᇙ ÷ j T \equiv

Ī =

CI-CL +242 kJ/mal; Using the bond energies given below, calculate the energy change for the reaction between H_2 and C_2 forming HCE. H-H: +436 kJ/mol;

neguined to break the original bonds:

- Find the energy
- the reaction using this equation:

forming emengly released by

Sounds